Τρίτη, 17 Νοεμβρίου 2020

Mechanical Learning & Artificial Intelligence

Μηχανική Μάθηση
&
Τεχνητή Νοημοσύνη


Οι περισσότεροι άνθρωποι
έχουν πλήρη άγνοια για
την τεράστια εξέλιξη της Τεχνητής Νοημοσύνης
-----------------------
Η Μηχανική Μάθηση
διαφέρει απίστευτα
σε σχέση
με αυτό που βλέπουμε
στις γνωστές μας "ευφυείς" συσκευές.
(computers, i-phones, laptops, tablets κλπ)
Όλα αυτά εκτελούν απλά
εντολές του χρήστη
μέσα σε αυστηρά πλαίσια που έχει θέσει
ο κατασκευαστής
Ουσιαστικά, δεν έχουν καμία ευφυία
--------------------------
Μία ιδέα
(απολύτως απλουστευτική και εκλαϊκευτική)
του πως μαθαίνουν να σκέφτονται
οι Υπολογιστές Τεχνητής Νοημοσύνης
μας δίνει η παραπάνω εικόνα
-----------------
Έχουμε λοιπόν το παράδειγμα
που ο κατασκευαστής
εμφυτεύει την δυνατότητα
σε ένα σφαιρίδιο
να εκτελεί ταλαντώσεις σε μία κοίλη επιφάνεια
Ωραία. Τίποτα ιδιαίτερο
Το σφαιρίδιο θα εκτελεί ταλαντώσεις αιώνια.
--------
Τι παραπάνω προσφέρει
ο κατασκευαστής στην "μηχανική μάθηση"?
Εμφυτεύει την ικανότητα
στο σφαιρίδιο να απομνημονεύει τις διαδρομές
και όταν τις βρίσκει ίδιες (ταυτόσημες ή μονότονες)
τότε
να μην συνεχίζει αιώνια (.. σαν βλάκας !)
αλλά
να αναζητά, αυτόβουλα μόνο του, μια νέα
(άγνωστη, μη-εμφυτευμένη κατασκευαστικά)
διαδρομή
αποκτώντας, έτσι,
την νοημοσύνη του εντόμου-"πασχαλίτσα"
που κάνει ακριβώς το ίδιο.
=============
- Συναρπαστικό? Ναι.
- Ανατριχιαστικό? Ίσως.

Δευτέρα, 9 Νοεμβρίου 2020

Group theory & Measurement



Από την Ομαδοθεωρία
στο Πείραμα





Φαντάζομαι
ότι πολλοί θα απορούν
πως ο Άνθρωπος επέτυχε να κάνει μετρήσεις
σε Κβαντικά Φαινόμενα
=================
Αυτό συμβαίνει
ακριβώς και μόνον επειδή
μας το επιτρέπει η ίδια η Mαθηματική Δομή
του Χωρόχρονου
------
Δηλαδή
στην ιστορική εξέλιξή του, ο Άνθρωπος
πρώτα
μπόρεσε να διακριβώσει
σε ποιά Αλγεβρική Ομάδα (qroup)
υπακούει το Κβαντικό Φαινόμενο
(π.χ. στο σχήμα, στροφές)
μετά
να το αναπαραστήσει (representation)
σε μία αναγώγιμη μήτρα (irreducible matrix)
η οποία "κατοικεί" σε έναν Χώρο Hilbert
μετά
να βρει τον (μιγαδικό) Μοναδιακό Τελεστή (Unitary Operator)
που αντιστοιχεί στο φαινόμενο αυτό (π.χ. στροφή)
μετά
να βρεί τον γεννήτορα του Μοναδιακού Τελεστή
που αντιστοιχεί σε "Κλασσικό" Φυσικό Μέγεθος (observabe)
(π.χ. Στροφορμή)
και μετά
να λάβει τις περίφημες ιδιοτιμές του
που τελικά
σχετίζονται άμεσα με τους
γνωστούς Κβαντικούς Αριθμούς (n, l, κλπ)
(measurable values)



-------------
Αυτή η διαδικασία δεν ήταν απλή
Ήταν αποτέλεσμα των πολυετών εργασιών
χιλιάδων μαθηματικών και φυσικών
του Πλανήτη
καθώς και τεχνολόγων μηχανικών
(που κατασκεύασαν τα όργανα μέτρησης)
ώστε
να μπορεί, σήμερα,
ένας Πειραματιστής
από την άνεση της καρέκλας του
σε ένα εργαστήριο
να πατάει ένα κουμπί σε ένα computer
και να παίρνει σε μια οθόνη computer
μία αριθμητική τιμή (π.χ. 5 χιλιοστά)
στο πείραμα που εκτελεί.





Κυριακή, 25 Οκτωβρίου 2020

4D-Rotation-03

 

4D-Rotation
(Τετραδιάστατη Στροφή)
(Μέρος 3)





Όσοι έχετε διαβάσει
Κλασσική ή Κβαντική Ηλεκτροδυναμική
ίσως έχετε απορήσει
πως οι φυσικοί βρήκαν
την μήτρα της Έντασης του Ηλεκτρομαγνητικού Πεδίου
(που φαίνεται στην εικόνα)
Ε ..μια ματιά στο Μέρος 2
θα σας δείξει
ότι ουσιαστικά είναι η ίδια
η μήτρα 4D-στροφής
μόνον που:
- στην θέση της ελλειπτικής γωνίας (θ)
τοποθετήθηκε η Μαγνητική Ένταση (B)
- στην θέση της υπερβολικής γωνίας (φ)
τοποθετήθηκε η Ηλεκτρική Ένταση (E)

Αυτό δείχνει την στενή σχέση
του Ηλεκτρομαγνητικού Πεδίου με τον Χωρόχρονο.


----
Τώρα
ακολουθεί η μήτρα
της Έντασης του Ηλεκτρομαγνητικού Πεδίου
αλλά...
όπως θα την έγραφε ένας 4D-Παρατηρητής
(όπως είδαμε, αντίστοιχα, για την 4D-στροφή
στο Μέρος 2)



-----------
Ποιό είναι το συμπέρασμα?
Ο 4D-Παρατηρητής δεν ξεχωρίζει
Ηλεκτρικό από Μαγνητικό Πεδίο
Αυτός βλέπει μόνο Ηλεκτρομαγνητικό Πεδίο
σε ενιαία μορφή.

Επίσης,
ο 4D-Παρατηρητής δεν θεωρεί
ότι το Ηλεκτρομαγνητικό Πεδίο
είναι "πλάσμα" της Φύσης
αλλά
"γέννημα" του Χωρόχρονου
(όπως συμβαίνει άλλωστε και
με το Βαρυτικό Πεδίο)
δηλ.
ο Χωρόχρονος, ανάλογα,
αν, τοπικά, στρεβλώνεται
(τεντώνεται ή συστρέφεται ή περιστρέφεται κλπ)
δίνει την εντύπωση σε μας τους
3D-Παρατηρητές
ότι υπάρχει κάποιο Πεδίο της Φύσης

----------
Ας υπενθυμίσουμε 
ότι ο 3D-Παρατηρητής
μπορεί να παρατηρήσει, διακριτά, 
συνιστώσες του Ηλεκτρικού και του Μαγνητικού Πεδίου,
σε ένα Ηλεκτρομαγνητικό Κύμα






4D-Rotation-02

 

4D-Rotation
(Τετραδιάστατη Στροφή)
(Μέρος 2)





Στο προηγούμενο Μέρος 1
είδαμε μια εικονική αναπαράσταση
της 4D-στροφής στον 4D-Χώρο
Όπως είπαμε
αυτές οι εικονικές αναπαραστάσεις
δεν βοηθούν ιδιαίτερα
στην κατανόηση του τρόπου
που αντιλαμβάνεται ο 4D-Παρατηρητής
το περιβάλλον του.
Έτσι
δυστυχώς, ο μόνος τρόπος κατανόησης
είναι διαμέσου των Mαθηματικών

-------------
Στην εικόνα βλέπουμε
την 4x4 μήτρα που αναπαριστά
μία "απειροστή" 4D-στροφή στον Χωρόχρονο
Όπως βλέπουμε
χρειαζόμαστε 2 απειροστές γωνίες:
- την "κόκκινη" απειροστή Ελλειπτική Γωνία (θ)
(δηλ. την συνηθισμένη γωνία στροφής στον συνήθη 3D-Χώρο)
- την "πορτοκαλί" απειροστή Υπερβολική Γωνία (φ)
(δηλ. μια ασυνήθιστη γωνία στροφής περί τον χρονικό άξονα (t))



----------------
Τώρα,
στην επόμενη εικόνα 
βλέπουμε την 4x4 μήτρα που αναπαριστά
μία "απειροστή" 4D-στροφή στον Χωρόχρονο
όπως θα την έγραφε ένας 4D-Παρατηρητής




Σε αυτήν βλέπουμε ότι ο 4D-Παρατηρητής
χρησιμοποιεί μόνον μία γωνία (θ)
Γιατί όμως?
Επειδή, απλά, δεν ξεχωρίζει:
- ούτε Ελλείψεις από Υπερβολές
- ούτε Σφαίρες από Κυλίνδρους
Τα βλέπει όλα αυτά, "ενιαία".

--------------------
Αυτή η αφηρημένη μαθηματική αναπαράσταση
της 4D-στροφής
(η τόσο αδιάφορη για τους Πολλούς)
έχει εντυπωσιακές συνέπειες
στον τρόπο που βλέπει
ένας 4D-Παρατηρητής
π.χ. έναν άνθρωπο.
Τον βλέπει ενιαίο
από την γέννησή του ως τον θάνατό του
....
Πιο απλουστευμένα, βλέπει
την γέννηση σαν την κορυφή του κεφαλιού του
και τον θάνατο σαν το άκρο των ποδιών του
...
Πιο απλοϊκά
δεν υπάρχουν γεννήσεις και θάνατοι
για τον 4D-Παρατηρητή.
Υπάρχει μόνον "χωροχρονικό ύψος" των υπαρχόντων αντικειμένων

Ίσως κάνει εντύπωση
αλλά στον Χωρόχρονο
ένα μωρό που πεθαίνει
ένα δευτερόλεπτο μετά την γέννησή του
και ένας υπερήλικας
που πεθαίνει στα 120
έχουν σχεδόν
το ίδιο "χωροχρονικό ύψος" (!!)
- Γιατί ?
- Επειδή, η τέταρτη διάσταση είναι c∙t
Αυτό έχει ως συνέπεια
λόγω του τεράστιου μεγέθους
της ταχύτητας του φωτός (c)
το 4D-μήκος/ύψος του "σκωληκάνθρωπου"
μέσα στον Χωρόχρονο
να είναι επίσης τεράστιο
οπότε
τα 120 έτη
συγκριτικά με τα 300.000 έτη (λόγω του c)
να είναι σχεδόν αμελητέα.


-------------

Πρέπει επίσης να σημειώσουμε
ότι: 
- η αντισυμμετρική μήτρα (~ πίνακας)
σχετίζεται πάντα με απειροστές στροφές
ενώ
- η συμμετρική μήτρα
με απειροστές διατμήσεις κλπ
-------------
Επίσης 
να διευκρινιστεί ότι 
η Ορθογώνια μήτρα
εκφράζει τις συνήθεις στροφές
ενώ 
η Αντισυμμετρική
εκφράζει απειροστές στροφές
(η σχέση τους είναι όπως
της unitary με την Hermitian
στον Χώρο Hilbert
της Κβαντομηχανικής)



----
Στο 3ο Μέρος
θα δούμε την εφαρμογή αυτών
στον Ηλεκτρομαγνητισμό

Περιεχόμενα

1. Τετραδιάστατη Στροφή (4D-Rotation)-01
2. Τετραδιάστατη Στροφή (4D-Rotation)-02
3. Τετραδιάστατη Στροφή (4D-Rotation)-03



Παρασκευή, 23 Οκτωβρίου 2020

4D-Rotation-01



4D-Rotation
(Τετραδιάστατη Στροφή)
(Μέρος 1)





Έχει σημασία να καταλάβουμε
το πως "βλέπει" ένας Τετρα-διάστατος Παρατηρητής
ένα Φυσικό Φαινόμενο ή ένα Φυσικό Αντικείμενο
στο Τετραδιάστατο Χώρο
------------
Η εικόνα αυτή
είναι η καλύτερη αναπαράσταση
μίας στροφής ενός τετρα-διάστατου Αντικειμένου
(π.χ. του Τεσσαράκτιου ( ή αλλιώς, Υπερκύβου = Tesseract) )
που έχει δημιουργηθεί μέχρι σήμερα

------
(Και προφανώς
η εικόνα αυτή
είναι τόσο λάθος
όσο η αναπαράσταση της σφαιρικής Γης
σε ένα δισδιάστατο χάρτη
Μερκατορικής προβολής)


Όμως
ας πάρουμε τα πράγματα από την αρχή
(συνέχεια στο επόμενο)

==========================
Περιεχόμενα

1. Τετραδιάστατη Στροφή (4D-Rotation)-01
2. Τετραδιάστατη Στροφή (4D-Rotation)-02
3. Τετραδιάστατη Στροφή (4D-Rotation)-03