Παρασκευή, 25 Νοεμβρίου 2016

Electromagnetism a la Mendeleev - A-08

Ηλεκτρομαγνητισμός αλά Mendeleev
-A-08-



Ζεύγος Πραγματικών Ευθειών

--------------------------------------------------------------------
--------------------------------------------------------------------

Ενδεικτικά, ας αναφέρουμε δύο από τα Θεμελιώδη Σχήματα του δισ-διάστατου 2D-Χώρου
που γνωρίσαμε μέχρι τώρα (από τα οποία παράγονται όλα τα υπόλοιπα)

Α) την Έλλειψη (δηλ. τον γενικευμένο Κύκλο) (στο Μέρος Α 01):
Στο σχήμα παρατηρούμε
ότι
 η Έλλειψη τέμνει
τόσο τον άξονα της Διάσταση (x)
όσο και τον άξονα της Διάστασης (y)



Η αλγεβρική εξίσωση που περιγράφει την Έλλειψη,
στην Κλασσική Γεωμετρία,
 είναι:

\frac{x^2}{a^2} + \frac{y^2}{b^2}=1



Β) Την Υπερβολή (στο Μέρος Α-02):
CurvesHyperbola-wik.png
Στο σχήμα παρατηρούμε
ότι 

η Υπερβολή
τέμνει μόνον τον άξονα της Διάστασης (x)
αλλά δεν τέμνει τον άξονα της Διάστασης (y).

Η αλγεβρική εξίσωση που περιγράφει την Υπερβολή,
στην Κλασσική Γεωμετρία,
 είναι:


\frac{x^2}{a^2} - \frac {y^2}{b^2} = 1


Ήρθε λοιπόν ο καιρός να γνωρίσουμε άλλο ένα θεμελιώδες δισδιάστατο σχήμα:

Το Ζεύγος Παραλλήλων Ευθειών

Lines-Straight-parallel-01-goog.png
Στο σχήμα βλέπουμε
τον άξονα (x) να τέμνεται σε δύο σημεία
αλλά
τον άξονα (t) να μην τέμνεται πουθενά

Η αλγεβρική εξίσωση που περιγράφει tο Ζεύγος Παραλλήλων Ευθειών
στην Κλασσική Γεωμετρία, είναι:



-------------

Όπως έχουμε προαναφέρει, η Πολυδιαστατική Θεωρία
δίνει μία ενιαία μορφή των εξισώσεων αυτών.
Έχουμε λοιπόν:

Α) Η αλγεβρική εξίσωση που περιγράφει την Έλλειψη,
στην Πολυδιαστατική Γεωμετρία,
 είναι:

\frac{\color{Red}x^2}{\color{Red}a^2} + \frac {\color{Red}y^2}{\color{Red}b^2} = 1

Οι "ερυθροί" άξονες (x,y) των δύο Διαστάσεων του δισ-διδιάστατου 2D-Χώρου
είναι αμφότεροι "ελκτικοί" και αναγκάζουν την ελαστική καμπύλη
(εδώ υπενθυμίζουμε ότι σύμφωνα με την Χορδοθεωρία όλη η Ύλη αποτελείται από "χορδές")
να τμήσει τον καθένα τους σε 2 σημεία του.


Β) Η αλγεβρική εξίσωση που περιγράφει την Υπερβολή,
στην Πολυδιαστατική Γεωμετρία, είναι:

\frac{\color{Red}x^2}{\color{Red}a^2} + \frac {\color{Brown}y^2}{\color{Brown}b^2} = 1

Ο μεν "ερυθρός" άξονας (x) της μίας Διάστασης του πραγματικού δισ-διδιάστατου 2D-Χώρου είναι "ελκτικός" και αναγκάζει την ελαστική καμπύλη (~ "χορδή")
να τον τμήσει σε 2 σημεία του.
όμως, ο "καστανόχροος" άξονας (y) της άλλης Διάστασης
του φανταστικού δισ-διδιάστατου 2D-Χώρου
είναι "απωστικός" και αναγκάζει την ελαστική καμπύλη (~ "χορδή")
να μην τον τμήσει σε κανένα σημείο του.

Γ) Η αλγεβρική εξίσωση που περιγράφει το Ζεύγος Παραλλήλων Ευθειών
στην Πολυδιαστατική Γεωμετρία, είναι:


Ο μεν "ερυθρός" άξονας (x)
της μίας Διάστασης του πραγματικού δισ-διδιάστατου 2D-Χώρου

είναι "ελκτικός" και αναγκάζει την ελαστική καμπύλη (~ "χορδή")
που σε αυτήν την περίπτωση είναι το ζεύγος των δύο ευθειών
να τον τμήσει σε 2 σημεία του.
Ο δεύτερος "κυανός" άξονας (t)
της Διάστασης του Χρόνου
δεν έλκει ούτε απωθεί αλλά απαγορεύει στην υλική "χορδή" να τον τμήσει
(ή ισοδύναμα, η τομή γίνεται στο άπειρο)

ΣΥΜΠΕΡΑΣΜΑ:
Συγκρίνοντας τα 3 παραπάνω σχήματα παρατηρούμε ότι
ενώ
οι "ερυθρές" πραγματικές Χωρικές Διαστάσεις
έλκουν τα άκρα μίας "χορδής" και απωθούν το μέσο του
και οι "καστανόχροοες" φανταστικές Χωρικές Διαστάσεις
απωθούν τα άκρα μιας "χορδής" και έλκουν το μέσο του
αντίθετα
η "κυανή" Χρονική Διάσταση ούτε έλκει ούτε απωθεί,
απλά απαγορεύει στην χορδή να την τμήσει, αναγκάζοντάς την
να μείνει σε παράλληλη θέση.

Από αυτήν την διαφορά Χώρου και Χρόνου
ξεκινούν όλες οι υπόλοιπες διαφορές τους
που τους καθιστούν τελείως διαφορετικές οντότητες
του Σύμπαντος.

--------------------------------
ΣΗΜΕΙΩΣΗ:
Υπενθυμίζουμε ότι
όπως έχουμε αναφέρει στο Μέρος Ο37 της Εισαγωγής
το διάνυσμα θέσης του 11-διάστατου Ενιαίου Χώρου
(της Επηυξημένης Πραγματικότητας) είναι:

 \vec{r} = 
\begin{bmatrix} 
\color{Red}{0}\\ 
\color{Red}{+x} \\ \color{Red}{+y} \\ \color{Red}{+z} \\ 
\color{Blue}{-t} \\
\color{Blue}{0} \\
\color{Green}{+it} \\ 
\color{Brown}{-iz} \\ \color{Brown}{-iy} \\ \color{Brown}{-ix} \\ 
\color{Brown}{i0}
\end{bmatrix}
Ανταλλοίωτο (contravariant) Διάνυσμα Θέσης
όπου:
το ερυθρό (0) = η Επίκενη (null) Διάσταση του Πραγματικού Χώρου
τα ερυθρά (x, y, z) = οι 3 γνωστές Διαστάσεις του Πραγματικού Χώρου
το κυανό (t) = η Διάσταση του Πραγματικού Χρόνου
το κυανό (0) = η Επίκενη 
(null) Διάσταση του Πραγματικού Χρόνου
το πράσινο (it) = η Διάσταση του Φανταστικού Χρόνου
(ή ισοδύναμα, η αντίστροφη συχνότητα, ή η Περίοδος Κύματος)
τα καστανόχροα (iz, iy, ix) οι Διαστάσεις του Φανταστικού Χώρου
(ή ισοδύναμα, οι αντίστροφοι κυματάριθμοι, ή τα μήκη Κύματος)
το καστανόχροο (i0) = η Επίκενη 
(null) Διάσταση του Φανταστικού Χώρου
-------------------------------------------------------------------
--------------------------------------------------------------------

Δεν υπάρχουν σχόλια: